麻豆中文字幕丨欧美一级免费在线观看丨国产成人无码av在线播放无广告丨国产第一毛片丨国产视频观看丨七妺福利精品导航大全丨国产亚洲精品自在久久vr丨国产成人在线看丨国产超碰人人模人人爽人人喊丨欧美色图激情小说丨欧美中文字幕在线播放丨老少交欧美另类丨色香蕉在线丨美女大黄网站丨蜜臀av性久久久久蜜臀aⅴ麻豆丨欧美亚洲国产精品久久蜜芽直播丨久久99日韩国产精品久久99丨亚洲黄色免费看丨极品少妇xxx丨国产美女极度色诱视频www

Unmuting large silent genes let bacteria produce new molecules: study

Source: Xinhua| 2019-01-01 06:05:33|Editor: ZX
Video PlayerClose

CHICAGO, Dec. 31 (Xinhua) -- By enticing away the repressors dampening unexpressed silent genes in Streptomyces bacteria, researchers at the University of Illinois (UI) have unlocked several large gene clusters for new natural products.

The researchers previously demonstrated a technique to activate small silent gene clusters using CRISPR technology. However, large silent gene clusters have remained difficult to unmute.

To unlock the large gene clusters of greatest interest, UI researchers created clones of the DNA fragments they wanted to express and injected them into the bacteria in hopes of luring away the repressor molecules that were preventing gene expression. They called these clones transcription factor decoys.

To prove that the molecules they coded for were being expressed, researchers tested the decoy method first on two known gene clusters that synthesize natural products. Next, they created decoys for eight silent gene clusters that had been previously unexplored. In bacteria injected with the decoys, the targeted silent genes were expressed and the researchers harvested new products.

"We saw that the method works well for these large clusters that are hard to target by other methods," said study leader and chemical and biomolecular engineering professor Huimin Zhao. "It also has the advantage that it does not disturb the genome; it's just pulling away the repressors. Then the genes are expressed naturally from the native DNA."

In the search for drug candidates, each product needs to be isolated and then studied to determine what it does. Of the eight new molecules produced, the researchers purified and determined the structure of two molecules, and described one in detail in the study: a novel type of oxazole, a class of molecules often used in drugs.

The researchers plan next to characterize the rest of the eight compounds and run various assays to find out whether they have any anti-microbial, anti-fungal, anti-cancer or other biological activities.

As many antibiotics, anti-cancer agents and other drugs have been derived from genes readily expressed in Streptomyces, the researchers hope that unsilencing genes that have not previously been expressed in the lab will yield additional candidates in the search for new antimicrobial drugs.

In the next step, the researchers plan to apply the decoy technique to explore more silent biosynthetic gene clusters of interest in Streptomyces and in other bacteria and fungi to find more undiscovered natural products.

The study has been published in the journal Nature Chemical Biology.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377112691